|
|
A238467
|
|
Generalized ordered Bell numbers Bo(10,n).
|
|
2
|
|
|
1, 10, 210, 6610, 277410, 14553010, 916146210, 67285818610, 5647734061410, 533307215001010, 55954905981282210, 6457903731351210610, 813080459351919805410, 110901542660769629769010, 16290196917457939734258210
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row 10 of array A094416, which has more information.
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: 1/(11 - 10*exp(x)).
a(0) = 1; a(n) = 10*a(n-1) - 11*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023
|
|
MATHEMATICA
|
t=30; Range[0, t]! CoefficientList[Series[1/(11 - 10 Exp[x]), {x, 0, t}], x]
|
|
PROG
|
(Magma) m:=20; R<x>:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(11 - 10*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|