login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365341
a(n) = (5*n)!/(4*n+1)!.
7
1, 1, 10, 210, 6840, 303600, 17100720, 1168675200, 93963542400, 8691104822400, 909171781056000, 106137499051584000, 13679492361575040000, 1929327666754295808000, 295570742023171270656000, 48877281133334949335040000, 8677556868736487617966080000
OFFSET
0,3
FORMULA
E.g.f.: exp( 1/5 * Sum_{k>=1} binomial(5*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002294(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^4).
a(n) = Sum_{k=0..n} (4*n+1)^(k-1) * |Stirling1(n,k)|. (End)
PROG
(PARI) a(n) = (5*n)!/(4*n+1)!;
(Python)
from sympy import ff
def A365341(n): return ff(5*n, n-1) # Chai Wah Wu, Sep 01 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 01 2023
STATUS
approved