The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001761 a(n) = (2*n)!/(n+1)!. (Formerly M3635 N1478) 24
 1, 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, 1764322560, 60949324800, 2346549004800, 99638080819200, 4626053752320000, 233153109116928000, 12677700308232960000, 739781100339240960000, 46113021921146019840000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS According to the Beineke and Pippert paper, the number of dissections of a disk is given by D(n)=R(n)/(n-2)!, where R(n)=A001761(n-2) is the number of labeled planar 2-trees having n vertices and rooted at a given exterior edge. [Clarified by M. F. Hasler, Feb 22 2012] a(n+1) is the number of labeled incomplete ternary trees on n vertices in which each left and middle child have a larger label than their parent. - Brian Drake, Jul 28 2008 For n>0: a(n) = A173333(2*n,n+1); cf. A006963, A001813. - Reinhard Zumkeller, Feb 19 2010 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98. P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. See p. 166 - N. J. A. Sloane, Apr 18 2014 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 80 K. A. Penson and J.-M. Sixdeniers, Integral Representations of Catalan and Related Numbers, J. Integer Sequences, 4 (2001), #01.2.5. K. A. Penson and A. I. Solomon, Coherent states from combinatorial sequences, arXiv:quant-ph/0111151, 2001. FORMULA a(n) = n!*Catalan(n) =n!* A000108(n). - N. J. A. Sloane, Apr 18 2014 a(n+2) = sum(A038455(n, m), m=1..n), n >= 1. - Wolfdieter Lang E.g.f. for this sequence = o.g.f. for A000108. - Len Smiley, Dec 07 2001 Integral representation as the moment of a positive function on the positive half-axis: in Maple notation, a(n)=int(x^n*(-1/2+exp(-x/4)/sqrt(Pi*x)+erf(sqrt(x)/2)/2), x=0..infinity), n=0, 1... This representation is unique. - Karol A. Penson, Aug 21 2001 G.f.: If G_N(x)=1+sum('(2*k)!*(x^k)/(k+1)!', 'k'=1..N),  G_N(x)=1+2*x/(G(0)-2*x); G(k)=4*x*(k^2)+6*k*x+k+2*x+2-2*x*(2*k+3)*((k+2)^2)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011 a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+1)^(k-1) * Stirling1(n,k). - Paul D. Hanna, Nov 09 2012 G.f.: Q(0) where Q(k) =  1 + x*(2*k+1)*(4*k+1)/(k+1 - 4*x*(k+1)^2*(4*k+3)/(4*x*(k+1)*(4*k+3) + (2*k+3)/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 05 2013 G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+2)/(2*k+2)/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013 Let A(x) = sum(k>=0, a(k)*x^k /(2*k)! ) = ( exp(x)-1)/x, then A(x) = 1/Q(0), where Q(k) = 1 - x/( 1 + (2*k+1)/(1 - x/( 1 + 2*(k+1)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013 From Ilya Gutkovskiy, Jan 21 2017: (Start) a(n) ~ sqrt(2)*4^n*n^(n-1)/exp(n). Sum_{n>=0} 1/a(n) = (7*exp(1/4)*sqrt(Pi)*erf(1/2) + 10)/8 = 2.2865189388213215..., where erf() is the error function. (End) D-finite with recurrence: (n+1)*a(n) -2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 16 2020 MAPLE seq(mul((n+k), k=2..n), n=0..17); # Zerinvary Lajos, Feb 15 2008 MATHEMATICA Table[(2*n)!/(n+1)!, {n, 0, 20}] (* Vincenzo Librandi, Feb 23 2012 *) PROG (MuPAD) combinat::catalan(n)*n! \$ n = 0..17; // Zerinvary Lajos, Feb 15 2007 (Sage) [binomial(2*n, n)/(1+n)*factorial(n) for n in range(0, 18)] # Zerinvary Lajos, Dec 03 2009 (PARI) A001761(n)=binomial(2*n, n+1)*(n-1)!  \\ M. F. Hasler, Feb 23 2012 (PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {a(n)=sum(k=0, n, (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k))} \\ Paul D. Hanna, Nov 09 2012 CROSSREFS Cf. A000108, A173333, A006963, A001813. Main diagonal of A255982, A256061. Sequence in context: A006149 A207833 A121413 * A292220 A099712 A209440 Adjacent sequences:  A001758 A001759 A001760 * A001762 A001763 A001764 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 13:01 EDT 2020. Contains 334748 sequences. (Running on oeis4.)