login
A255982
Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
16
1, 0, 1, 0, 2, 4, 0, 5, 29, 30, 0, 14, 184, 486, 336, 0, 42, 1148, 5880, 9744, 5040, 0, 132, 7228, 64464, 192984, 230400, 95040, 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160, 0, 1430, 300476, 7043814, 51622600, 165293700, 259518600, 196756560, 57657600
OFFSET
0,5
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A237018(n,k-i).
EXAMPLE
A(3,1) = 5:
[||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
.
A(2,2) = 4:
._______. ._______. ._______. ._______.
| | | | | | | | | | |
|___| | | |___| |___|___| |_______|
| | | | | | | | | | |
|___|___| |___|___| |_______| |___|___|.
.
Triangle T(n,k) begins:
1
0, 1;
0, 2, 4;
0, 5, 29, 30;
0, 14, 184, 486, 336;
0, 42, 1148, 5880, 9744, 5040;
0, 132, 7228, 64464, 192984, 230400, 95040;
0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160;
...
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000108 (for n>0), A258416, A258417, A258418, A258419, A258420, A258421, A258422, A258423, A258424.
Main diagonal gives A001761.
Row sums give A258425.
T(2n,n) give A258426.
Sequence in context: A319275 A269011 A274086 * A256061 A323099 A002652
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 13 2015
STATUS
approved