login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255982 Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 16
1, 0, 1, 0, 2, 4, 0, 5, 29, 30, 0, 14, 184, 486, 336, 0, 42, 1148, 5880, 9744, 5040, 0, 132, 7228, 64464, 192984, 230400, 95040, 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160, 0, 1430, 300476, 7043814, 51622600, 165293700, 259518600, 196756560, 57657600 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Rows n = 0..135, flattened

FORMULA

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A237018(n,k-i).

EXAMPLE

A(3,1) = 5:

  [||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].

.

A(2,2) = 4:

  ._______.  ._______.  ._______.  ._______.

  |   |   |  |   |   |  |   |   |  |       |

  |___|   |  |   |___|  |___|___|  |_______|

  |   |   |  |   |   |  |       |  |   |   |

  |___|___|  |___|___|  |_______|  |___|___|.

.

Triangle T(n,k) begins:

  1

  0,   1;

  0,   2,     4;

  0,   5,    29,     30;

  0,  14,   184,    486,     336;

  0,  42,  1148,   5880,    9744,    5040;

  0, 132,  7228,  64464,  192984,  230400,   95040;

  0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160;

  ...

MAPLE

b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,

       A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))

    end:

A:= proc(n, k) option remember; `if`(n=0, 1,

      -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))

    end:

T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):

seq(seq(T(n, k), k=0..n), n=0..10);

MATHEMATICA

b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]];

A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]];

T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007, A000108 (for n>0), A258416, A258417, A258418, A258419, A258420, A258421, A258422, A258423, A258424.

Main diagonal gives A001761.

Row sums give A258425.

T(2n,n) give A258426.

Cf. A237018, A256061, A258427.

Sequence in context: A319275 A269011 A274086 * A256061 A323099 A002652

Adjacent sequences:  A255979 A255980 A255981 * A255983 A255984 A255985

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 08:31 EST 2021. Contains 349437 sequences. (Running on oeis4.)