login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258425
Total number of partitions of all hypercubes resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each dimension is used at least once.
2
1, 1, 6, 64, 1020, 21854, 590248, 19268098, 738194780, 32481348812, 1614506203400, 89478362311442, 5471239864890436, 365900668319641264, 26569358218427144576, 2081825562568924254126, 175078869470374599592604, 15730138729512408087404292
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A255982(n,k).
a(n) ~ 2^(2*n-5/8) * n^(n-1) / (exp(n) * (log(2))^(n+1)). - Vaclav Kotesovec, May 30 2015
EXAMPLE
a(2) = 2 + 4 = 6:
In one dimension: [||-], [-||]
. .___. .___. .___. .___.
In two dimensions: |_| | | |_| |_|_| |___|
. |_|_| |_|_| |___| |_|_| .
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, A[n-1, k], Sum[A[j, k]* b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n==0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; T[n_, k_] := T[n, k] = Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)
CROSSREFS
Row sums of A255982.
Sequence in context: A336114 A354494 A370894 * A365054 A249592 A333983
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved