login
A258423
Number of partitions of the 9-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
1764322560, 268497815040, 23638153069440, 1582270134681600, 89523597871058400, 4521537191138385600, 210558053896067770200, 9231136974969952417200, 386479930120038746283600, 15609810973119409265234400, 612788961533595085909010880, 23513250306172521375772885440
OFFSET
9,1
LINKS
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 9):
seq(a(n), n=9..25);
CROSSREFS
Column k=9 of A255982.
Sequence in context: A015411 A034649 A211240 * A174762 A147769 A198177
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved