The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174762 x-values in the solution x^2-61*y^2=1. 3
 1, 1766319049, 6239765965720528801, 22042834973108102061352541449, 77869358613928486808166555366140995201, 275084262906388245923976756042747916825335226249, 971773147303355325052564141449134520779147876502526039201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The corresponding values of y of this Pell equation are in A176364. The next term has 67 digits. [From Harvey P. Dale, Jan. 15, 2011] REFERENCES Edward J. Barbeau, Pell's Equation (Springer-Verlag 2003) at pp. 23-24. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..100 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) N. J. Wildberger, Pell's equation without irrational numbers, J. Int. Seq. 13 (2010), 10.4.3, Section 7. Index entries for linear recurrences with constant coefficients, signature (3532638098,-1). FORMULA a(n) = 3532638098*a(n-1)-a(n-2) with a(1)=1, a(2)=1766319049. G.f.: x*(1-1766319049*x)/(1-3532638098*x+x^2). MATHEMATICA LinearRecurrence[{3532638098, -1}, {1, 1766319049}, 20] PROG (Magma) I:=[1, 1766319049]; [n le 2 select I[n] else 3532638098*Self(n-1)-Self(n-2): n in [1..10]]; CROSSREFS Cf. A176364. Sequence in context: A034649 A211240 A258423 * A147769 A198177 A129616 Adjacent sequences: A174759 A174760 A174761 * A174763 A174764 A174765 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Apr 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:41 EDT 2024. Contains 373410 sequences. (Running on oeis4.)