login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015411
Gaussian binomial coefficient [ n,11 ] for q=-7.
2
1, -1730160900, 3492366196825305150, -6885474806748086165925231300, 13620506320919298149305087013514770853, -26930589057943180119027708901012791326856423600, 53251026575272012092468957753658186409285293414393640600
OFFSET
11,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..11} ((-7)^(n-i+1)-1)/((-7)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 11, -7], {n, 11, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
PROG
(Sage) [gaussian_binomial(n, 11, -7) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A129474 A204347 A228376 * A034649 A211240 A258423
KEYWORD
sign,easy
STATUS
approved