login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015410 Gaussian binomial coefficient [ n,11 ] for q=-6. 2
1, -310968905, 116041991914472611, -41905685236388916561230885, 15214999201976941569510489219969931, -5519247137793116688209551072778853951561365, 2002409531513525089470147425061900304433199288073771 (list; graph; refs; listen; history; text; internal format)
OFFSET

11,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 11..120

FORMULA

a(n) = Product_{i=1..11} ((-6)^(n-i+1)-1)/((-6)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012

MATHEMATICA

Table[QBinomial[n, 11, -6], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)

PROG

(Sage) [gaussian_binomial(n, 11, -6) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009

(MAGMA) r:=11; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012

CROSSREFS

Sequence in context: A251807 A184671 A034610 * A189055 A221985 A219784

Adjacent sequences:  A015407 A015408 A015409 * A015411 A015412 A015413

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 08:09 EST 2020. Contains 331104 sequences. (Running on oeis4.)