login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015408
Gaussian binomial coefficient [ n,11 ] for q=-4.
3
1, -3355443, 15011998086813, -61996192875273494691, 261050608944894743386831965, -1093857392934787687867181291059107, 4589090822384565497755014953620236474461, -19246867256860431244800698494652605702283863971
OFFSET
11,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..11} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 05 2012
MATHEMATICA
Table[QBinomial[n, 11, -4], {n, 11, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
PROG
(Sage) [gaussian_binomial(n, 11, -4) for n in range(11, 18)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 05 2012
CROSSREFS
Sequence in context: A116306 A257917 A257916 * A036472 A206168 A206382
KEYWORD
sign,easy
STATUS
approved