login
A015405
Gaussian binomial coefficient [ n,11 ] for q=-2.
2
1, -1365, 3727815, -6785865905, 14824402656063, -29439916001972385, 61250446192484546335, -124468028808034701006945, 255910660218571393553843871, -523082886040328458081329117025
OFFSET
11,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
a(n) = Product_{i=1..11} ((-2)^(n-i+1)-1)/((-2)^i-1). - Vincenzo Librandi, Nov 05 2012
MATHEMATICA
Table[QBinomial[n, 11, -2], {n, 11, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
PROG
(Sage) [gaussian_binomial(n, 11, -2) for n in range(11, 21)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 05 2012
CROSSREFS
Diagonal k=11 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Sequence in context: A096117 A140936 A022204 * A295466 A292780 A180089
KEYWORD
sign,easy
STATUS
approved