login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015414
Gaussian binomial coefficient [ n,11 ] for q=-9.
2
1, -28242953648, 897372484611991440598, -28121923404466184234811544425296, 882630281467161063728449241801432249226565, -27697404417453539188846019907159858548132165589760832, 869175534545800426775448129124238227336771807766117241522242296
OFFSET
11,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..11} ((-9)^(n-i+1)-1)/((-9)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 11, -9], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 11, -9) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A017662 A120322 A324977 * A252839 A307760 A216017
KEYWORD
sign,easy
STATUS
approved