login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258422 Number of partitions of the 8-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once. 2
57657600, 6895848960, 485566099200, 26364414061440, 1224007231940640, 51216101151626880, 1991943704397427200, 73440737647137519120, 2601107886874207253760, 89332305977055996111040, 2995343867463073686769440, 98555316817167057069129600 (list; graph; refs; listen; history; text; internal format)
OFFSET

8,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 8..650

MAPLE

b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,

       A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))

    end:

A:= proc(n, k) option remember; `if`(n=0, 1,

      -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))

    end:

T:= proc(n, k) option remember;

      add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)

    end:

a:= n-> T(n, 8):

seq(a(n), n=8..25);

CROSSREFS

Column k=8 of A255982.

Sequence in context: A269476 A234759 A172593 * A172679 A034612 A015355

Adjacent sequences:  A258419 A258420 A258421 * A258423 A258424 A258425

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 17:04 EST 2020. Contains 332080 sequences. (Running on oeis4.)