login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258422
Number of partitions of the 8-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
57657600, 6895848960, 485566099200, 26364414061440, 1224007231940640, 51216101151626880, 1991943704397427200, 73440737647137519120, 2601107886874207253760, 89332305977055996111040, 2995343867463073686769440, 98555316817167057069129600
OFFSET
8,1
LINKS
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 8):
seq(a(n), n=8..25);
CROSSREFS
Column k=8 of A255982.
Sequence in context: A269476 A234759 A172593 * A172679 A034612 A015355
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved