login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of the 8-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2

%I #5 May 29 2015 16:23:21

%S 57657600,6895848960,485566099200,26364414061440,1224007231940640,

%T 51216101151626880,1991943704397427200,73440737647137519120,

%U 2601107886874207253760,89332305977055996111040,2995343867463073686769440,98555316817167057069129600

%N Number of partitions of the 8-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

%H Alois P. Heinz, <a href="/A258422/b258422.txt">Table of n, a(n) for n = 8..650</a>

%p b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,

%p A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))

%p end:

%p A:= proc(n, k) option remember; `if`(n=0, 1,

%p -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))

%p end:

%p T:= proc(n, k) option remember;

%p add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)

%p end:

%p a:= n-> T(n, 8):

%p seq(a(n), n=8..25);

%Y Column k=8 of A255982.

%K nonn

%O 8,1

%A _Alois P. Heinz_, May 29 2015