login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A258424
Number of partitions of the 10-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
60949324800, 11504185056000, 1238502000960000, 100203614366688000, 6786584967157027200, 406962991813415247000, 22343812436173975084800, 1147985274106305649476000, 56030531363859577353444000, 2626132408521540739815456000, 119149819949135773678717267200
OFFSET
10,1
LINKS
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 10):
seq(a(n), n=10..25);
CROSSREFS
Column k=10 of A255982.
Sequence in context: A273931 A273933 A196753 * A015431 A273934 A017410
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved