login
A015431
Gaussian binomial coefficient [ n,12 ] for q=-8.
2
1, 61083979321, 4264288605349394427001, 292468454161371994489927453227641, 20103187136428193301141459556344509715532409, 1381438342588687480407961010312719764427906885156653689, 94932082182896025238148883982319050364413593497347296287825382009
OFFSET
12,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..12} ((-8)^(n-i+1)-1)/((-8)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 12, -8], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 12, -8) for n in range(12, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A273933 A196753 A258424 * A273934 A017410 A017530
KEYWORD
nonn,easy
STATUS
approved