login
A015433
Gaussian binomial coefficient [ n,12 ] for q=-10.
2
1, 909090909091, 918273645546455463728191, 917356289257199182819017528926537191, 917448034060605151598548458052424151513398447191, 917438859672008440688621912439351273986143166283578679347191, 917439777111785551556734609501952335249856503700731106092153925870347191
OFFSET
12,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..12} ((-10)^(n-i+1)-1)/((-10)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 12, -10], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 12, -10) for n in range(12, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A297354 A172798 A186017 * A234195 A297356 A172853
KEYWORD
nonn,easy
STATUS
approved