login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015434 Gaussian binomial coefficient [ n,12 ] for q=-11. 2
1, 2876892678661, 9104162632986302495960347, 28551311330859170052594978984538703567, 89612366318560505321323986969057938917191132920348, 281240247078624326614268823428029385995576471270476701478391628 (list; graph; refs; listen; history; text; internal format)
OFFSET

12,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 12..90

FORMULA

a(n) = product(((-11)^(n-i+1)-1)/((-11)^i-1), i=1..12) (by definition). - Vincenzo Librandi, Nov 06 2012

MATHEMATICA

Table[QBinomial[n, 12, -11], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)

PROG

(Sage) [gaussian_binomial(n, 12, -11) for n in range(12, 17)] # Zerinvary Lajos, May 28 2009

(MAGMA) r:=12; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012

CROSSREFS

Sequence in context: A233496 A233617 A323052 * A017292 A017400 A017664

Adjacent sequences:  A015431 A015432 A015433 * A015435 A015436 A015437

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 11:07 EST 2020. Contains 331105 sequences. (Running on oeis4.)