login
A258419
Number of partitions of the 5-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
5040, 230400, 6792750, 165293700, 3624918660, 74699100720, 1479942440340, 28577108044800, 542482698531000, 10181610525525360, 189663357076785270, 3515970161266821510, 64985380300281057950, 1199146771516702098500, 22111945264260791498090
OFFSET
5,1
LINKS
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 5):
seq(a(n), n=5..25);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 5];
a /@ Range[5, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A255982.
Sequence in context: A135456 A254080 A228910 * A355023 A179062 A342075
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved