|
|
A342075
|
|
Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.
|
|
4
|
|
|
0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
LINKS
|
Peter Kagey, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = -3597143040*n + 11590795728*n^2 - 15837356724*n^3 + 12355698460*n^4 - 6212542175*n^5 + 2144307578*n^6 - 526197678*n^7 + 93450369*n^8 - 12064836*n^9 + 1122618*n^10 - 73423*n^11 + 3206*n^12 - 84*n^13 + n^14.
a(n) = (n - 6)*(n - 5)*(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(n^7 - 63 n^6 + 1708 n^5 - 25795 n^4 + 234094 n^3 - 1275281 n^2 + 3858049 n - 4996032).
a(n) = Sum_{i=1..14} A334279(7,i)*n^i.
|
|
MATHEMATICA
|
p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x];
Table[p /. x -> n, {n, 0, 50}]
|
|
CROSSREFS
|
Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6).
Cf. A334279, A342088.
Sequence in context: A228910 A258419 A179062 * A055362 A246195 A246615
Adjacent sequences: A342072 A342073 A342074 * A342076 A342077 A342078
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Peter Kagey, Feb 27 2021
|
|
STATUS
|
approved
|
|
|
|