login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355023
Number of labeled trees on n nodes with maximum degree three and three vertices of degree three.
2
5040, 317520, 12700800, 419126400, 12573792000, 359610451200, 10069092633600, 280496151936000, 7853892254208000, 222526947202560000, 6408776079433728000, 188184970332463104000, 5645549109973893120000, 173274930375352565760000, 5445783526082509209600000, 175354229539856796549120000
OFFSET
8,1
FORMULA
a(n) = (1/8)*n!*binomial(n-2,n-8).
E.g.f.: x^8/(8*(1 - x)^7). - Stefano Spezia, Jun 16 2022
a(n) = 7*binomial(n,n-8)*(n-2)!. - Chai Wah Wu, Jun 16 2022
EXAMPLE
First term counts (the nodes are labeled for a total of 8! possibilities divided by eight automorphisms, 5040):
o
|
|
|
|
o
/ \
/ \
o o
/ \ / \
o o o o
MATHEMATICA
CoefficientList[Series[x^8/(8(1-x)^7), {x, 0, 23}], x]
Table[n!, {n, 0, 23}] (* Stefano Spezia, Jun 16 2022 *)
PROG
(Python)
from math import comb, factorial
def A355023(n): return 7*comb(n, n-8)*factorial(n-2) # Chai Wah Wu, Jun 16 2022
(PARI) a(n) = 7*binomial(n, n-8)*(n-2)! \\ Felix Fröhlich, Jun 17 2022
CROSSREFS
Cf. A355024.
Sequence in context: A254080 A228910 A258419 * A179062 A342075 A055362
KEYWORD
nonn
AUTHOR
Marko Riedel, Jun 15 2022
STATUS
approved