login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355023
Number of labeled trees on n nodes with maximum degree three and three vertices of degree three.
2
5040, 317520, 12700800, 419126400, 12573792000, 359610451200, 10069092633600, 280496151936000, 7853892254208000, 222526947202560000, 6408776079433728000, 188184970332463104000, 5645549109973893120000, 173274930375352565760000, 5445783526082509209600000, 175354229539856796549120000
OFFSET
8,1
FORMULA
a(n) = (1/8)*n!*binomial(n-2,n-8).
E.g.f.: x^8/(8*(1 - x)^7). - Stefano Spezia, Jun 16 2022
a(n) = 7*binomial(n,n-8)*(n-2)!. - Chai Wah Wu, Jun 16 2022
EXAMPLE
First term counts (the nodes are labeled for a total of 8! possibilities divided by eight automorphisms, 5040):
o
|
|
|
|
o
/ \
/ \
o o
/ \ / \
o o o o
MATHEMATICA
CoefficientList[Series[x^8/(8(1-x)^7), {x, 0, 23}], x]
Table[n!, {n, 0, 23}] (* Stefano Spezia, Jun 16 2022 *)
PROG
(Python)
from math import comb, factorial
def A355023(n): return 7*comb(n, n-8)*factorial(n-2) # Chai Wah Wu, Jun 16 2022
(PARI) a(n) = 7*binomial(n, n-8)*(n-2)! \\ Felix Fröhlich, Jun 17 2022
CROSSREFS
Cf. A355024.
Sequence in context: A254080 A228910 A258419 * A179062 A342075 A055362
KEYWORD
nonn
AUTHOR
Marko Riedel, Jun 15 2022
STATUS
approved