Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Aug 22 2022 04:49:35
%S 5040,317520,12700800,419126400,12573792000,359610451200,
%T 10069092633600,280496151936000,7853892254208000,222526947202560000,
%U 6408776079433728000,188184970332463104000,5645549109973893120000,173274930375352565760000,5445783526082509209600000,175354229539856796549120000
%N Number of labeled trees on n nodes with maximum degree three and three vertices of degree three.
%H Marko R. Riedel et al., Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/4472439/">Trees with maximum degree three and three vertices of degree three</a>.
%F a(n) = (1/8)*n!*binomial(n-2,n-8).
%F E.g.f.: x^8/(8*(1 - x)^7). - _Stefano Spezia_, Jun 16 2022
%F a(n) = 7*binomial(n,n-8)*(n-2)!. - _Chai Wah Wu_, Jun 16 2022
%e First term counts (the nodes are labeled for a total of 8! possibilities divided by eight automorphisms, 5040):
%e o
%e |
%e |
%e |
%e |
%e o
%e / \
%e / \
%e o o
%e / \ / \
%e o o o o
%t CoefficientList[Series[x^8/(8(1-x)^7), {x,0,23}], x]
%t Table[n!, {n, 0, 23}] (* _Stefano Spezia_, Jun 16 2022 *)
%o (Python)
%o from math import comb, factorial
%o def A355023(n): return 7*comb(n,n-8)*factorial(n-2) # _Chai Wah Wu_, Jun 16 2022
%o (PARI) a(n) = 7*binomial(n,n-8)*(n-2)! \\ _Felix Fröhlich_, Jun 17 2022
%Y Cf. A355024.
%K nonn
%O 8,1
%A _Marko Riedel_, Jun 15 2022