login
A334279
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the 1-skeleton of the n-dimensional cross polytope, 0 <= k <= 2n.
8
0, 0, 1, 0, -3, 6, -4, 1, 0, -64, 154, -137, 58, -12, 1, 0, -2790, 7467, -7852, 4300, -1346, 244, -24, 1, 0, -205056, 593016, -698250, 448015, -175004, 43608, -6990, 700, -40, 1, 0, -22852200, 70164670, -89812001, 64407806, -29113410, 8790285, -1822164, 260868, -25405, 1610, -60, 1
OFFSET
1,5
COMMENTS
A033815 is the number of acyclic orientations of the n-dimensional cross polytope, which is the absolute value of the chromatic polynomial evaluated at -1.
Sums of absolute values of entries in each row give A033815.
These graphs are chromatically unique, that is, there is no nonisomorphic graph with the same chromatic polynomial.
Conjectures from Peter Kagey, Apr 26 2020: (Start)
T(n,1) = -A161131(2n-1).
T(n,2n-2) = A212689(2n - 1).
T(n,2n-1) = A046092(n-1). (End)
LINKS
Peter Kagey, Table of n, a(n) for n = 1..2600 (first 50 rows)
Chong-Yun Chao and George A. Novacky Jr., On maximally saturated graphs, Discrete Math., 41 (1982), 139-143.
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Wikipedia, Cross-polytope
Wikipedia, TurĂ¡n graph
EXAMPLE
Table begins:
n/k| 0 1 2 3 4 5 6 7 8 9 10
---+---------------------------------------------------------------
1| 0 0 1
2| 0 -3 6 -4 1
3| 0 -64 154 -137 58 -12 1
4| 0 -2790 7467 -7852 4300 -1346 244 -24 1
5| 0 -205056 593016 -698250 448015 -175004 43608 -6990 700 -40 1
CROSSREFS
A334278 is analogous for the n-dimensional hypercube.
Sequence in context: A288092 A127574 A356501 * A334278 A169842 A185588
KEYWORD
sign,tabf,look
AUTHOR
Peter Kagey, Apr 21 2020
STATUS
approved