login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185588
Triangular array read by rows. The n-th row is the expansion of (1+x)(1+2x+4x^2)...(1+nx+(nx)^2+(nx)^3+...(nx)^n).
1
1, 1, 1, 1, 3, 6, 4, 1, 6, 24, 76, 147, 198, 108, 1, 10, 64, 332, 1475, 5074, 14260, 32464, 52032, 57600, 27648, 1, 15, 139, 1027, 6610, 38124, 189255, 822489, 3164477, 10692485, 30443198, 72934740, 141861200, 202056000, 197280000, 86400000
OFFSET
0,5
COMMENTS
T(n,k) is the sum of products of the elements in the size k submultisets of the multiset {1,2,2,3,3,3,...n} which contains i copies of i, 1<=i<=n.
The n-th row has n*(n+1)/2+1 elements: 0 <= k <= A000217(n).
FORMULA
O.g.f. for row n: Product_{j=1..n} Sum_{i=0..j} (j*x)^i.
EXAMPLE
T(3,2) = 24 because the size 2 submultisets of {1,2,2,3,3,3} are: {1,2},{1,3}, {2,2}, {2,3}, {3,3}. And 1*2 + 1*3 + 2*2 + 2*3 + 3*3 = 24.
Triangle T(n,k) begins:
1;
1, 1;
1, 3, 6, 4;
1, 6, 24, 76, 147, 198, 108;
1, 10, 64, 332, 1475, 5074, 14260, 32464, 52032, 57600, 27648;
MAPLE
T:= (n, k)-> coeff (mul (add ((j*x)^i, i=0..j), j=1..n), x, k):
seq (seq (T(n, k), k=0..n*(n+1)/2), n=0..7);
MATHEMATICA
Table[CoefficientList[Series[Product[Sum[(j x)^i, {i, 0, j}], {j, 1, n}], {x, 0, 20}], x], {n, 0, 5}]//Grid
CROSSREFS
Cf. A000217.
Sequence in context: A334279 A334278 A169842 * A199737 A220397 A021737
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 04 2011
STATUS
approved