OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Eric Weisstein's MathWorld, Reciprocal Multifactorial Constant
FORMULA
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (gamma(j/k) - gamma(j/k, 1/k)) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.
EXAMPLE
3.640224467733809734176937236963569060632409516968842599452955763...
MATHEMATICA
m[5] = (1/5)*E^(1/5)*(5 + 5^(1/5)*(Gamma[1/5] - Gamma[1/5, 1/5]) + 5^(2/5)*(Gamma[2/5] - Gamma[2/5, 1/5]) + 5^(3/5)*(Gamma[3/5] - Gamma[3/5, 1/5]) + 5^(4/5)*(Gamma[4/5] - Gamma[4/5, 1/5])); RealDigits[m[5], 10, 102][[1]]
PROG
(PARI) default(realprecision, 105); (1/5)*exp(1/5)*(5 + sum(k=1, 4, 5^(k/5)*(gamma(k/5) - incgam(k/5, 1/5)))) \\ G. C. Greubel, Mar 28 2019
(Magma) SetDefaultRealField(RealField(105)); (1/5)*Exp(1/5)*(5 + (&+[5^(k/5)*Gamma(k/5, 1/5): k in [1..4]])); // G. C. Greubel, Mar 28 2019
(Sage) numerical_approx((1/5)*exp(1/5)*(5 + sum(5^(k/5)*(gamma(k/5) - gamma_inc(k/5, 1/5)) for k in (1..4))), digits=105) # G. C. Greubel, Mar 28 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jun 05 2017
STATUS
approved