login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288090
a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 2.
9
7808250450, 955708437684, 56532447160536, 2200626948631386, 64232028100704156, 1511718920778951024, 30044423965980553536, 520516978029736518606, 8044640800289827566756, 112860842135424498808968, 1456882832375987896763184, 17491588653334242501297012, 197038603477850885815215480
OFFSET
13,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 10, 2];
Table[a[n], {n, 13, 25}] (* Jean-François Alcover, Oct 18 2018 *)
PROG
(PARI)
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288090_ser(N) = {
my(y = A000108_ser(N+1));
6*y*(y-1)^13*(197300616213*y^12 + 2233379349250*y^11 + 1077980722075*y^10 - 16537713992125*y^9 + 7856375825902*y^8 + 29387232350368*y^7 - 33290642716432*y^6 + 994024496848*y^5 + 14078465181600*y^4 - 6737013421440*y^3 + 532103069696*y^2 + 244607984896*y - 34798091776)/(y-2)^38;
};
Vec(A288090_ser(13))
CROSSREFS
Rooted maps of genus 2 with n edges and f faces for 1<=f<=10: A006298 f=1, A288082 f=2, A288083 f=3, A288084 f=4, A288085 f=5, A288086 f=6, A288087 f=7, A288088 f=8, A288089 f=9, this sequence.
Column 10 of A269922.
Cf. A000108.
Sequence in context: A226950 A225141 A015413 * A306828 A364436 A075131
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 05 2017
STATUS
approved