login
A226950
Higher powers having partitions into distinct higher powers in more than one way.
2
7449150177, 8936757492481, 11587386200625, 22449633661000, 30511719124992, 36443545848801, 283680450809856, 583096733580816, 613579106939841, 3958783819215057, 4098048384032001, 4556608567054336, 13469350037585841, 23887131799781376, 36604958689202176, 58634065908167841, 69952404620958561, 91953699475456000, 124976001535967232, 149272763796688896, 183001280170947121, 225430653627891712
OFFSET
1,1
COMMENTS
A power m^k is called a higher power if k > 2, cf. A076467.
EXAMPLE
a(1) = 7449150177 = 1953^3 = 1116^3 + 279^4 = 217^4 + 1736^3;
a(2) = 8936757492481 = 1729^4 = 1729^3 + 20748^3 = 15561^3 + 17290^3;
see link for more examples and more info.
PROG
(Haskell)
import qualified Data.Set as Set (split, filter)
import Data.Set (Set, empty, size, insert, member)
a226950 n = a226950_list !! (n-1)
a226950_list = f a076467_list empty where
f (x:xs) s | size s'' <= 1 = f xs (x `insert` s)
| otherwise = x : f xs (x `insert` s)
where s'' = Set.filter ((`member` s) . (x -)) s'
(s', _) = Set.split (x `div` 2) s
CROSSREFS
Cf. A051388, subsequence of A226777.
Sequence in context: A257899 A199632 A104851 * A225141 A015413 A288090
KEYWORD
nonn
AUTHOR
STATUS
approved