login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226777
Higher powers that are sums of two distinct higher powers.
4
243, 2744, 6561, 177147, 185193, 474552, 614656, 810000, 941192, 1124864, 1419857, 1500625, 3241792, 4782969, 7962624, 11239424, 16003008, 17850625, 21952000, 26873856, 28372625, 52200625, 68574961, 82312875, 117649000, 129140163, 162771336, 200201625, 238328000
OFFSET
1,1
COMMENTS
x is in the sequence iff there are distinct y,z such that x = y + z and x,y,z are all in A076467.
LINKS
Robert Israel and Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 (first 264 terms from Robert Israel)
EXAMPLE
243 is in the sequence because 243 = 3^5 = 3^3 + 6^3.
MAPLE
N := 10^12: # to get terms up to N
S := {seq(seq(a^x, a=1 .. floor(N^(1/x))), x = 3 .. floor(log[2](N)))}:
f:= proc(n) local L; L:= S[1..n-1] minus {S[n]/2}; nops(map2(`-`, S[n], L) intersect L) > 0 end proc;
A:= map(t -> S[t], select(f, [$1..nops(S)]));
MATHEMATICA
max = 3*10^8; pp = Join[{1}, Table[n^k, {k, 3, Floor[Log[2, max]]}, {n, 2, Floor[max^(1/k)]}] // Flatten // Union]; Select[Total /@ Subsets[pp, {2}], MemberQ[pp, #]&] // Union (* Jean-François Alcover, Feb 14 2018 *)
PROG
(Haskell)
import qualified Data.Set as Set (null, split, filter)
import Data.Set (Set, empty, insert, member)
a226777 n = a226777_list !! (n-1)
a226777_list = f a076467_list empty where
f (x:xs) s | Set.null $ Set.filter ((`member` s) . (x -)) s'
= f xs (x `insert` s)
| otherwise = x : f xs (x `insert` s)
where (s', _) = Set.split (x `div` 2) s
-- Reinhard Zumkeller, Sep 13, Jun 19 2013
CROSSREFS
Sequence in context: A100627 A269056 A209507 * A016757 A133550 A029700
KEYWORD
nonn
AUTHOR
Robert Israel, Jun 17 2013
STATUS
approved