login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016757
a(n) = (2*n+1)^5.
9
1, 243, 3125, 16807, 59049, 161051, 371293, 759375, 1419857, 2476099, 4084101, 6436343, 9765625, 14348907, 20511149, 28629151, 39135393, 52521875, 69343957, 90224199, 115856201, 147008443, 184528125, 229345007, 282475249, 345025251, 418195493, 503284375, 601692057
OFFSET
0,2
FORMULA
G.f.: (1+x)*(x^4 +236*x^3 +1446*x^2 +236*x +1)/(x-1)^6 . - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=0} 1/a(n) = 31*zeta(5)/32.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^5/1536 (A175571). (End)
MATHEMATICA
Table[(2*n+1)^5, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 243, 3125, 16807, 59049, 161051}, 30] (* Harvey P. Dale, Sep 04 2022 *)
PROG
(Magma) [(2*n+1)^5: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
(Maxima) makelist((2*n+1)^5, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
(PARI) vector(30, n, n--; (2*n+1)^5) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
Cf. A175571.
Sequence in context: A269056 A209507 A226777 * A133550 A029700 A224003
KEYWORD
nonn,easy
STATUS
approved