login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016760 a(n) = (2*n+1)^8. 3
1, 6561, 390625, 5764801, 43046721, 214358881, 815730721, 2562890625, 6975757441, 16983563041, 37822859361, 78310985281, 152587890625, 282429536481, 500246412961, 852891037441, 1406408618241, 2251875390625, 3512479453921, 5352009260481, 7984925229121, 11688200277601 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

a(n) = A016756(n)^2. - Michel Marcus, Dec 26 2016

G.f.: -(1+6552*x +331612*x^2 +2485288*x^3 +4675014*x^4 +2485288*x^5 +331612*x^6 +6552*x^7 +x^8)/(x-1)^9 . - R. J. Mathar, Jul 07 2017

Sum_{n>=0} 1/a(n) = 17*Pi^8/161280 (A300710). - Amiram Eldar, Oct 11 2020

Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(Pi/2)*(cos(Pi/sqrt(2)) + cosh(Pi/sqrt(2)))/32. - Amiram Eldar, Jan 28 2021

MATHEMATICA

Table[(2*n+1)^8, {n, 0, 30)] (* G. C. Greubel, Sep 15 2018 *)

PROG

(MAGMA) [(2*n+1)^8: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011

(Maxima) A016760(n):=(2*n+1)^8$

makelist(A016760(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */

(PARI) vector(30, n, n--; (2*n+1)^8) \\ G. C. Greubel, Sep 15 2018

CROSSREFS

Cf. A016756, A300710.

Sequence in context: A017500 A017632 A209510 * A203652 A016772 A059980

Adjacent sequences:  A016757 A016758 A016759 * A016761 A016762 A016763

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 01:07 EDT 2021. Contains 345404 sequences. (Running on oeis4.)