The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059980 Number of 8-dimensional cage assemblies. 2
 1, 6561, 1679616, 100000000, 2562890625, 37822859361, 377801998336, 2821109907456, 16815125390625, 83733937890625, 360040606269696, 1370114370683136, 4702525276151521, 14774554437890625, 42998169600000000, 117033789351264256, 300283484326400961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325. LINKS Table of n, a(n) for n=1..17. Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review. Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1). FORMULA G.f.: -x*(x^14 +6544*x^13 +1568215*x^12 +72338144*x^11 +1086859301*x^10 +6727188848*x^9 +19323413187*x^8 +27306899520*x^7 +19323413187*x^6 +6727188848*x^5 +1086859301*x^4 +72338144*x^3 +1568215*x^2 +6544*x +1)/(x-1)^17. - Colin Barker, Jul 09 2012 From Peter Bala, Jul 02 2019 (Start) a(n) = (n*(n + 1)/2)^8. a(n) = (1/16)*( S(9,n) + 7*S(11,n) + 7*S(13,n) + S(15,n) ), where S(r,n) = Sum_{k = 1..n} k^r. Cf. A059977 and A059978. (End) From Amiram Eldar, May 15 2022: (Start) Sum_{n>=1} 1/a(n) = 146432*Pi^2 + 5632*Pi^4/3 + 2048*Pi^6/105 + 256*Pi^8/4725 - 1647360. Sum_{n>=1} (-1)^(n+1)/a(n) = 1647360 - 1757184*log(2) - 304128*zeta(3) - 57600*zeta(5) - 4032*zeta(7). (End) MATHEMATICA m = 8; Table[n^m (n + 1)^m/2^m, {n, 1, 18}] CROSSREFS Cf. A059827, A059860, A059977, A059978, A091043. Sequence in context: A016760 A203652 A016772 * A038684 A016844 A016892 Adjacent sequences: A059977 A059978 A059979 * A059981 A059982 A059983 KEYWORD nonn,easy AUTHOR Robert G. Wilson v, Mar 06 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)