login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059827
Cubes of triangular numbers: (n*(n+1)/2)^3.
12
1, 27, 216, 1000, 3375, 9261, 21952, 46656, 91125, 166375, 287496, 474552, 753571, 1157625, 1728000, 2515456, 3581577, 5000211, 6859000, 9261000, 12326391, 16194277, 21024576, 27000000, 34328125, 43243551, 54010152, 66923416, 82312875, 100544625, 122023936, 147197952
OFFSET
1,2
COMMENTS
Three-dimensional cage assemblies. (See Chapter 61, "Hyperspace Prisons", of C. A. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers.")
For n>=0 the number of 3 X 3 matrices with nonnegative integer entries such that every row sum equals n is a(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002
a(n) also gives the value for the number of possible cuboids (including cubes) that will fit inside an n*n*n cube. - Alexander Craggs, Mar 08 2017
REFERENCES
C. A. Pickover. "Wonders of Numbers: Adventures in Mathematics, Mind and Meaning." Oxford University Press. New York, NY, 2001.
LINKS
Mauro Fiorentini, Pi, occorrenze in teoria dei numeri, (in Italian).
FORMULA
a(n) = Sum_{j=1..n} Sum_{i=1..n} i*j^3. - Alexander Adamchuk, Jun 25 2006
a(n) = (A000217(n))^3. - Zak Seidov, Jan 21 2012
G.f.: x*(1 + 20*x + 48*x^2 + 20*x^3 + x^4)/(1 - x)^7. - Colin Barker, Apr 24 2012
Sum_{n>=1} 1/a(n) = 80 - 8*Pi^2 (Ramanujan). - Jaume Oliver Lafont, Jul 17 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 96*log(2) + 12*zeta(3) -80. - Amiram Eldar, May 14 2022
MAPLE
for n from 1 to 100 do printf(`%d, `, ((n^3)*(n + 1)^3)/8) od:
[seq(binomial(n+2, n)^3, n=0..50)]; # Zerinvary Lajos, May 17 2006
MATHEMATICA
Table[(n(n+1)/2)^3, {n, 1000}] (* Zak Seidov, Jan 21 2012 *)
PROG
(PARI) a(n) = { (n*(n + 1)/2)^3 } \\ Harry J. Smith, Jun 29 2009
CROSSREFS
Cf. A357178 (first differences).
Sequence in context: A016767 A224354 A224013 * A117688 A272342 A107054
KEYWORD
nonn,easy,changed
AUTHOR
Jason Earls, Feb 24 2001
EXTENSIONS
More terms from James A. Sellers, Feb 26 2001
STATUS
approved