login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059824
Expansion of series related to Liouville's Last Theorem: g.f. Sum_{t>=1} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^7 * Product_{i=1..t} (1-x^i) ).
1
0, 1, 8, 35, 119, 321, 784, 1672, 3389, 6280, 11285, 18971, 31383, 49162, 76322, 113494, 167785, 239086, 340355, 468636, 646058, 865724, 1161936, 1520105, 1997015, 2559758, 3297599, 4157592, 5266644, 6537922, 8168293, 10003615
OFFSET
0,3
LINKS
G. E. Andrews, Some debts I owe, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
MAPLE
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i, i=1..n), n=1..101): end; # with k=7
CROSSREFS
Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).
Sequence in context: A285240 A036598 A229403 * A248882 A292479 A301881
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 24 2001
STATUS
approved