|
|
A248882
|
|
Expansion of Product_{k>=1} (1+x^k)^(k^3).
|
|
22
|
|
|
1, 1, 8, 35, 119, 433, 1476, 4962, 16128, 51367, 160105, 490219, 1476420, 4378430, 12805008, 36962779, 105417214, 297265597, 829429279, 2291305897, 6270497702, 17008094490, 45744921052, 122052000601, 323166712109, 849453194355, 2217289285055, 5749149331789
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ Zeta(5)^(1/10) * 3^(1/5) * exp(2^(-11/5) * 3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) * n^(4/5)) / (2^(71/120) * 5^(2/5)* sqrt(Pi) * n^(3/5)), where Zeta(5) = A013663.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 4*x^k + x^(2*k))/(k*(1 - x^k)^4)). - Ilya Gutkovskiy, May 30 2018
|
|
MAPLE
|
b:= proc(n) option remember; add(
(-1)^(n/d+1)*d^4, d=numtheory[divisors](n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(k)*a(n-k), k=1..n)/n)
end:
|
|
MATHEMATICA
|
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^3), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
PROG
|
(PARI) x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 06 2017
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|