The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013663 Decimal expansion of zeta(5). 97
 1, 0, 3, 6, 9, 2, 7, 7, 5, 5, 1, 4, 3, 3, 6, 9, 9, 2, 6, 3, 3, 1, 3, 6, 5, 4, 8, 6, 4, 5, 7, 0, 3, 4, 1, 6, 8, 0, 5, 7, 0, 8, 0, 9, 1, 9, 5, 0, 1, 9, 1, 2, 8, 1, 1, 9, 7, 4, 1, 9, 2, 6, 7, 7, 9, 0, 3, 8, 0, 3, 5, 8, 9, 7, 8, 6, 2, 8, 1, 4, 8, 4, 5, 6, 0, 0, 4, 3, 1, 0, 6, 5, 5, 7, 1, 3, 3, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS In a widely distributed May 2011 email, Wadim Zudilin gave a rebuttal to v1 of Kim's 2011 preprint: "The mistake (unfixable) is on p. 6, line after eq. (3.3). 'Without loss of generality' can be shown to work only for a finite set of n_k's; as the n_k are sufficiently large (and N is fixed), the inequality for epsilon is false." In a May 2013 email, Zudilin extended his rebuttal to cover v2, concluding that Kim's argument "implies that at least one of zeta(2), zeta(3), zeta(4) and zeta(5) is irrational, which is trivial." - Jonathan Sondow, May 06 2013 General: zeta(2*s + 1) = (A000364(s)/A331839(s)) * Pi^(2*s + 1) * Product_{k >= 1} (A002145(k)^(2*s + 1) + 1)/(A002145(k)^(2*s + 1) - 1), for s >= 1. - Dimitris Valianatos, Apr 27 2020 REFERENCES Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811. LINKS Table of n, a(n) for n=1..99. Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Michael J. Dancs and Tian-Xiao He, An Euler-type formula for zeta(2k+1), Journal of Number Theory, Volume 118, Issue 2, June 2006, Pages 192-199. Robert J. Harley, Zeta(3), Zeta(5), .., Zeta(99) 10000 digits (txt, 400 KB). Yong-Cheol Kim, zeta(5) is irrational, arXiv:1105.0730 [math.CA], 2011. [Jonathan Vos Post, May 4, 2011]. Simon Plouffe, Computation of Zeta(5) Simon Plouffe, Zeta(5), the sum(1/n**5, n=1..infinity) to 512 digits Simon Plouffe, Other interesting computations at numberworld.org. Chuanan Wei, Some fast convergent series for the mathematical constants zeta(4) and zeta(5), arXiv:2303.07887 [math.CO], 2023. Wikipedia, Zeta constant Wadim Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ. Math. Surv., 56 (2001), 774-776. FORMULA From Peter Bala, Dec 04 2013: (Start) Definition: zeta(5) = Sum_{n >= 1} 1/n^5. zeta(5) = 2^5/(2^5 - 1)*(Sum_{n even} n^5*p(n)*p(1/n)/(n^2 - 1)^6 ), where p(n) = n^2 + 3. See A013667, A013671 and A013675. (End) zeta(5) = Sum_{n >= 1} (A010052(n)/n^(5/2)) = Sum_{n >= 1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n^(5/2)). - Mikael Aaltonen, Feb 22 2015 zeta(5) = Product_{k>=1} 1/(1 - 1/prime(k)^5). - Vaclav Kotesovec, Apr 30 2020 From Artur Jasinski, Jun 27 2020: (Start) zeta(5) = (-1/30)*Integral_{x=0..1} log(1-x^4)^5/x^5. zeta(5) = (1/24)*Integral_{x=0..infinity} x^4/(exp(x)-1). zeta(5) = (2/45)*Integral_{x=0..infinity} x^4/(exp(x)+1). zeta(5) = (1/(1488*zeta(1/2)^5))*(-5*Pi^5*zeta(1/2)^5 + 96*zeta'(1/2)^5 - 240*zeta(1/2)*zeta'(1/2)^3*zeta''(1/2) + 120*zeta(1/2)^2*zeta'(1/2)*zeta''(1/2)^2 + 80*zeta(1/2)^2*zeta'(1/2)^2*zeta'''(1/2)- 40*zeta(1/2)^3*zeta''(1/2)*zeta'''(1/2) - 20*zeta(1/2)^3*zeta'(1/2)*zeta''''(1/2)+4*zeta(1/2)^4*zeta'''''(1/2)). (End). EXAMPLE 1/1^5 + 1/2^5 + 1/3^5 + 1/4^5 + 1/5^5 + 1/6^5 + 1/7^5 + ... = 1 + 1/32 + 1/243 + 1/1024 + 1/3125 + 1/7776 + 1/16807 + ... = 1.036927755143369926331365486457... MATHEMATICA RealDigits[Zeta, 10, 100][] (* Alonso del Arte, Jan 13 2012 *) PROG (PARI) zeta(5) \\ Michel Marcus, Apr 17 2016 CROSSREFS Cf. A002117, A013667, A013669, A013671, A013675, A013677, A243264, A255323. Cf. A023872, A023873, A248882, A255050, A255052, A057528, A260404. Sequence in context: A258329 A094561 A099679 * A245223 A180593 A271742 Adjacent sequences: A013660 A013661 A013662 * A013664 A013665 A013666 KEYWORD nonn,cons AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 10:45 EDT 2023. Contains 365688 sequences. (Running on oeis4.)