login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013675 Decimal expansion of zeta(17). 9
1, 0, 0, 0, 0, 0, 7, 6, 3, 7, 1, 9, 7, 6, 3, 7, 8, 9, 9, 7, 6, 2, 2, 7, 3, 6, 0, 0, 2, 9, 3, 5, 6, 3, 0, 2, 9, 2, 1, 3, 0, 8, 8, 2, 4, 9, 0, 9, 0, 2, 6, 2, 6, 7, 9, 0, 9, 5, 3, 7, 9, 8, 4, 3, 9, 7, 2, 9, 3, 5, 6, 4, 3, 2, 9, 0, 2, 8, 2, 4, 5, 9, 3, 4, 2, 0, 8, 1, 7, 3, 8, 6, 3, 6, 9, 1, 6, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,7

LINKS

Table of n, a(n) for n=1..99.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 811.

FORMULA

From Peter Bala, Dec 04 2013: (Start)

Definition: zeta(17) = sum {n >= 1} 1/n^17.

zeta(17) = 2^17/(2^17 - 1)*( sum {n even} n^11*p(n)*p(1/n)/(n^2 - 1)^18 ), where p(n) = n^8 + 36*n^6 + 126*n^4 + 84*n^2 + 9. Cf. A013663, A013667 and A013671.

(End)

zeta(17) = Sum_{n >= 1} (A010052(n)/n^(17/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(17/2) ). - Mikael Aaltonen, Feb 23 2015

EXAMPLE

1.0000076371976378997622736002935630292130882490902626790953798439729356...

MATHEMATICA

RealDigits[Zeta[17], 10, 75][[1]] (* Vincenzo Librandi, Feb 24 2015 *)

PROG

(PARI) zeta(17) \\ Charles R Greathouse IV, Dec 04 2013

CROSSREFS

Cf. A013663, A013667, A013669, A013671, A013675, A013677, A010057.

Sequence in context: A238239 A199437 A021571 * A198878 A187799 A288935

Adjacent sequences:  A013672 A013673 A013674 * A013676 A013677 A013678

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 19:24 EDT 2019. Contains 328127 sequences. (Running on oeis4.)