login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013675
Decimal expansion of zeta(17).
16
1, 0, 0, 0, 0, 0, 7, 6, 3, 7, 1, 9, 7, 6, 3, 7, 8, 9, 9, 7, 6, 2, 2, 7, 3, 6, 0, 0, 2, 9, 3, 5, 6, 3, 0, 2, 9, 2, 1, 3, 0, 8, 8, 2, 4, 9, 0, 9, 0, 2, 6, 2, 6, 7, 9, 0, 9, 5, 3, 7, 9, 8, 4, 3, 9, 7, 2, 9, 3, 5, 6, 4, 3, 2, 9, 0, 2, 8, 2, 4, 5, 9, 3, 4, 2, 0, 8, 1, 7, 3, 8, 6, 3, 6, 9, 1, 6, 6, 7
OFFSET
1,7
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 811.
FORMULA
From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(17) = sum {n >= 1} 1/n^17.
zeta(17) = 2^17/(2^17 - 1)*( sum {n even} n^11*p(n)*p(1/n)/(n^2 - 1)^18 ), where p(n) = n^8 + 36*n^6 + 126*n^4 + 84*n^2 + 9. Cf. A013663, A013667 and A013671.
(End)
zeta(17) = Sum_{n >= 1} (A010052(n)/n^(17/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(17/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(17) = Product_{k>=1} 1/(1 - 1/prime(k)^17). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0000076371976378997622736002935630292130882490902626790953798439729356...
MATHEMATICA
RealDigits[Zeta[17], 10, 75][[1]] (* Vincenzo Librandi, Feb 24 2015 *)
PROG
(PARI) zeta(17) \\ Charles R Greathouse IV, Dec 04 2013
KEYWORD
cons,nonn
STATUS
approved