The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013675 Decimal expansion of zeta(17). 9
 1, 0, 0, 0, 0, 0, 7, 6, 3, 7, 1, 9, 7, 6, 3, 7, 8, 9, 9, 7, 6, 2, 2, 7, 3, 6, 0, 0, 2, 9, 3, 5, 6, 3, 0, 2, 9, 2, 1, 3, 0, 8, 8, 2, 4, 9, 0, 9, 0, 2, 6, 2, 6, 7, 9, 0, 9, 5, 3, 7, 9, 8, 4, 3, 9, 7, 2, 9, 3, 5, 6, 4, 3, 2, 9, 0, 2, 8, 2, 4, 5, 9, 3, 4, 2, 0, 8, 1, 7, 3, 8, 6, 3, 6, 9, 1, 6, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 LINKS M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 811. FORMULA From Peter Bala, Dec 04 2013: (Start) Definition: zeta(17) = sum {n >= 1} 1/n^17. zeta(17) = 2^17/(2^17 - 1)*( sum {n even} n^11*p(n)*p(1/n)/(n^2 - 1)^18 ), where p(n) = n^8 + 36*n^6 + 126*n^4 + 84*n^2 + 9. Cf. A013663, A013667 and A013671. (End) zeta(17) = Sum_{n >= 1} (A010052(n)/n^(17/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(17/2) ). - Mikael Aaltonen, Feb 23 2015 zeta(17) = Product_{k>=1} 1/(1 - 1/prime(k)^17). - Vaclav Kotesovec, May 02 2020 EXAMPLE 1.0000076371976378997622736002935630292130882490902626790953798439729356... MATHEMATICA RealDigits[Zeta[17], 10, 75][[1]] (* Vincenzo Librandi, Feb 24 2015 *) PROG (PARI) zeta(17) \\ Charles R Greathouse IV, Dec 04 2013 CROSSREFS Cf. A013663, A013667, A013669, A013671, A013675, A013677, A010057. Sequence in context: A238239 A199437 A021571 * A198878 A332982 A335996 Adjacent sequences:  A013672 A013673 A013674 * A013676 A013677 A013678 KEYWORD cons,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 18:24 EST 2021. Contains 340254 sequences. (Running on oeis4.)