login
A013672
Decimal expansion of zeta(14).
15
1, 0, 0, 0, 0, 6, 1, 2, 4, 8, 1, 3, 5, 0, 5, 8, 7, 0, 4, 8, 2, 9, 2, 5, 8, 5, 4, 5, 1, 0, 5, 1, 3, 5, 3, 3, 3, 7, 4, 7, 4, 8, 1, 6, 9, 6, 1, 6, 9, 1, 5, 4, 5, 4, 9, 4, 8, 2, 7, 5, 5, 2, 0, 2, 2, 5, 2, 8, 6, 2, 9, 4, 1, 0, 2, 3, 1, 7, 7, 4, 2, 0, 8, 7, 6, 6, 5, 9, 7, 8, 2, 9, 7, 1, 9, 9, 8, 4, 6
OFFSET
1,6
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
zeta(14) = Sum_{n >= 1} (A010052(n)/n^7) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^7 ). - Mikael Aaltonen, Feb 20 2015
zeta(14) = 2/18243225*Pi^14 (see A002432). - Rick L. Shepherd, May 30 2016
zeta(14) = Product_{k>=1} 1/(1 - 1/prime(k)^14). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0000612481350587048292585451051353337474816961691545494827552022528629...
MATHEMATICA
RealDigits[Zeta[14], 10, 120][[1]] (* Harvey P. Dale, Dec 19 2014 *)
PROG
(PARI) zeta(14) \\ Michel Marcus, Feb 20 2015
CROSSREFS
Sequence in context: A106687 A083463 A187110 * A019946 A090551 A220782
KEYWORD
nonn,cons
STATUS
approved