|
|
A013672
|
|
Decimal expansion of zeta(14).
|
|
3
|
|
|
1, 0, 0, 0, 0, 6, 1, 2, 4, 8, 1, 3, 5, 0, 5, 8, 7, 0, 4, 8, 2, 9, 2, 5, 8, 5, 4, 5, 1, 0, 5, 1, 3, 5, 3, 3, 3, 7, 4, 7, 4, 8, 1, 6, 9, 6, 1, 6, 9, 1, 5, 4, 5, 4, 9, 4, 8, 2, 7, 5, 5, 2, 0, 2, 2, 5, 2, 8, 6, 2, 9, 4, 1, 0, 2, 3, 1, 7, 7, 4, 2, 0, 8, 7, 6, 6, 5, 9, 7, 8, 2, 9, 7, 1, 9, 9, 8, 4, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
zeta(14) = Sum_{n >= 1} (A010052(n)/n^7) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^7 ). - Mikael Aaltonen, Feb 20 2015
zeta(14) = 2/18243225*Pi^14 (see A002432). - Rick L. Shepherd, May 30 2016
zeta(14) = Product_{k>=1} 1/(1 - 1/prime(k)^14). - Vaclav Kotesovec, May 02 2020
|
|
EXAMPLE
|
1.0000612481350587048292585451051353337474816961691545494827552022528629...
|
|
MATHEMATICA
|
RealDigits[Zeta[14], 10, 120][[1]] (* Harvey P. Dale, Dec 19 2014 *)
|
|
PROG
|
(PARI) zeta(14) \\ Michel Marcus, Feb 20 2015
|
|
CROSSREFS
|
Sequence in context: A106687 A083463 A187110 * A019946 A090551 A220782
Adjacent sequences: A013669 A013670 A013671 * A013673 A013674 A013675
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|