OFFSET
1,5
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
zeta(12) = 2/3*2^12/(2^12 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^13 ), where p(n) = 7*n^12 + 182*n^10 + 1001*n^8 + 1716*n^6 + 1001*n^4 + 182*n^2 + 7 is a row polynomial of A091043. - Peter Bala, Dec 05 2013
zeta(12) = Sum_{n >= 1} (A010052(n)/n^6) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^6 ). - Mikael Aaltonen, Feb 20 2015
zeta(12) = 691/638512875*Pi^12 (see A002432). - Rick L. Shepherd, May 30 2016
zeta(12) = Product_{k>=1} 1/(1 - 1/prime(k)^12). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0002460865533080482986379980477396709604160884580034045330409521332520...
MATHEMATICA
RealDigits[Zeta[12], 10, 120][[1]] (* Harvey P. Dale, Apr 30 2013 *)
PROG
(PARI) zeta(12) \\ Michel Marcus, Feb 20 2015
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
STATUS
approved