

A013666


Decimal expansion of zeta(8).


9



1, 0, 0, 4, 0, 7, 7, 3, 5, 6, 1, 9, 7, 9, 4, 4, 3, 3, 9, 3, 7, 8, 6, 8, 5, 2, 3, 8, 5, 0, 8, 6, 5, 2, 4, 6, 5, 2, 5, 8, 9, 6, 0, 7, 9, 0, 6, 4, 9, 8, 5, 0, 0, 2, 0, 3, 2, 9, 1, 1, 0, 2, 0, 2, 6, 5, 2, 5, 8, 2, 9, 5, 2, 5, 7, 4, 7, 4, 8, 8, 1, 4, 3, 9, 5, 2, 8, 7, 2, 3, 0, 3, 7, 2, 3, 7, 1, 9, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

This sequence is also the decimal expansion of Pi^8/9450.  Mohammad K. Azarian, Mar 03 2008


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.


LINKS

Table of n, a(n) for n=1..99.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


FORMULA

zeta(8) = 2/3*2^8/(2^8  1)*( sum {n even} n^2*p(n)/(n^2  1)^9 ), where p(n) = 5*n^8 + 60*n^6 + 126*n^4 + 60*n^2 + 5 is a row polynomial of A091043. See A013662, A013664, A013668 and A013670.  Peter Bala, Dec 05 2013
zeta(8) = Sum_{n >= 1} (A010052(n)/n^4).  Mikael Aaltonen, Feb 20 2015


EXAMPLE

1.00407735619794433937868523850865246525896079064985002032911020265...


MATHEMATICA

RealDigits[Zeta[8], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *)


CROSSREFS

Cf. A013662, A013664, A013668, A013670.
Sequence in context: A070433 A169821 A170990 * A196533 A200518 A016682
Adjacent sequences: A013663 A013664 A013665 * A013667 A013668 A013669


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane


STATUS

approved



