The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013664 Decimal expansion of zeta(6). 91
 1, 0, 1, 7, 3, 4, 3, 0, 6, 1, 9, 8, 4, 4, 4, 9, 1, 3, 9, 7, 1, 4, 5, 1, 7, 9, 2, 9, 7, 9, 0, 9, 2, 0, 5, 2, 7, 9, 0, 1, 8, 1, 7, 4, 9, 0, 0, 3, 2, 8, 5, 3, 5, 6, 1, 8, 4, 2, 4, 0, 8, 6, 6, 4, 0, 0, 4, 3, 3, 2, 1, 8, 2, 9, 0, 1, 9, 5, 7, 8, 9, 7, 8, 8, 2, 7, 7, 3, 9, 7, 7, 9, 3, 8, 5, 3, 5, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811. LINKS Muniru A Asiru, Table of n, a(n) for n = 1..2000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. D. H. Bailey, J. M. Borwein and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505270 [math.NT], 2005-2006. Ankush Goswami, A q-analogue for Euler's ζ(6) = π^6/945, arXiv:1802.08529 [math.NT], 2018. Index entries for constants related to zeta FORMULA Equals Pi^6/945 = A092732/945. - Mohammad K. Azarian, Mar 03 2008 zeta(6) = 8/3*2^6/(2^6 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^7 ), where p(n) = n^6 + 7*n^4 + 7*n^2 + 1 is a row polynomial of A091043. See A013662, A013666, A013668 and A013670. - Peter Bala, Dec 05 2013 Definition: zeta(6) = Sum_{n >= 1} 1/n^6. - Bruno Berselli, Dec 05 2013 zeta(6) = Sum_{n >= 1} (A010052(n)/n^3). - Mikael Aaltonen, Feb 20 2015 zeta(6) = Sum_{n >= 1} (A010057(n)/n^2). - A.H.M. Smeets, Sep 19 2018 zeta(6) = Product_{k>=1} 1/(1 - 1/prime(k)^6). - Vaclav Kotesovec, May 02 2020 From Wolfdieter Lang, Sep 16 2020: (Start) zeta(6) = (1/5!)*Integral_{x=0..infinity} x^5/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=6, p. 807. See also A337710 for the value of the integral. zeta(6) = (4/465)*Integral_{x=0..infinity} x^5/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=6, p. 807. The value of the integral is (31/252)*Pi^6 = 118.2661309... . (End) EXAMPLE 1.01734306198444913... MAPLE evalf(Pi^6/945) ; # R. J. Mathar, Oct 16 2015 MATHEMATICA RealDigits[Zeta[6], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *) PROG (PARI) zeta(6) \\ Michel Marcus, Feb 15 2015 CROSSREFS Cf. A013662, A013666, A013668, A013670, A337710. Sequence in context: A066747 A240908 A117043 * A154173 A075697 A222231 Adjacent sequences: A013661 A013662 A013663 * A013665 A013666 A013667 KEYWORD nonn,cons AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 11:27 EDT 2024. Contains 373677 sequences. (Running on oeis4.)