

A013664


Decimal expansion of zeta(6).


8



1, 0, 1, 7, 3, 4, 3, 0, 6, 1, 9, 8, 4, 4, 4, 9, 1, 3, 9, 7, 1, 4, 5, 1, 7, 9, 2, 9, 7, 9, 0, 9, 2, 0, 5, 2, 7, 9, 0, 1, 8, 1, 7, 4, 9, 0, 0, 3, 2, 8, 5, 3, 5, 6, 1, 8, 4, 2, 4, 0, 8, 6, 6, 4, 0, 0, 4, 3, 3, 2, 1, 8, 2, 9, 0, 1, 9, 5, 7, 8, 9, 7, 8, 8, 2, 7, 7, 3, 9, 7, 7, 9, 3, 8, 5, 3, 5, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

This sequence is also the decimal expansion of pi^6/945.  Mohammad K. Azarian, Mar 03 2008


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.


LINKS

Table of n, a(n) for n=1..99.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
D. H. Bailey, J. M. Borwein and D. M. Bradley, Experimental determination of Ap'erylike identities for zeta(4n+2)


FORMULA

zeta(6) = 8/3*2^6/(2^6  1)*( sum {n even} n^2*p(n)/(n^2  1)^7 ), where p(n) = n^6 + 7*n^4 + 7*n^2 + 1 is a row polynomial of A091043. See A013662, A013666, A013668 and A013670.  Peter Bala, Dec 05 2013
Definition: zeta(6) = sum( 1/n^6, n>=1 ). [Bruno Berselli, Dec 05 2013]


CROSSREFS

Cf. A013662, A013666, A013668, A013670.
Sequence in context: A127559 A066747 A117043 * A154173 A075697 A222231
Adjacent sequences: A013661 A013662 A013663 * A013665 A013666 A013667


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane.


STATUS

approved



