login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013664 Decimal expansion of zeta(6). 29
1, 0, 1, 7, 3, 4, 3, 0, 6, 1, 9, 8, 4, 4, 4, 9, 1, 3, 9, 7, 1, 4, 5, 1, 7, 9, 2, 9, 7, 9, 0, 9, 2, 0, 5, 2, 7, 9, 0, 1, 8, 1, 7, 4, 9, 0, 0, 3, 2, 8, 5, 3, 5, 6, 1, 8, 4, 2, 4, 0, 8, 6, 6, 4, 0, 0, 4, 3, 3, 2, 1, 8, 2, 9, 0, 1, 9, 5, 7, 8, 9, 7, 8, 8, 2, 7, 7, 3, 9, 7, 7, 9, 3, 8, 5, 3, 5, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..2000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

D. H. Bailey, J. M. Borwein and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505270 [math.NT], 2005-2006.

Ankush Goswami, A q-analogue for Euler's ζ(6) = π^6/945, arXiv:1802.08529 [math.NT], 2018.

FORMULA

Equals Pi^6/945 = A092732/945. - Mohammad K. Azarian, Mar 03 2008

zeta(6) = 8/3*2^6/(2^6 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^7 ), where p(n) = n^6 + 7*n^4 + 7*n^2 + 1 is a row polynomial of A091043. See A013662, A013666, A013668 and A013670. - Peter Bala, Dec 05 2013

Definition: zeta(6) = Sum_{n >= 1} 1/n^6. - Bruno Berselli, Dec 05 2013

zeta(6) = Sum_{n >= 1} (A010052(n)/n^3). - Mikael Aaltonen, Feb 20 2015

zeta(6) = Sum_{n >= 1} (A010057(n)/n^2). - A.H.M. Smeets, Sep 19 2018

zeta(6) = Product_{k>=1} 1/(1 - 1/prime(k)^6). - Vaclav Kotesovec, May 02 2020

From Wolfdieter Lang, Sep 16 2020: (Start)

zeta(6) = (1/5!)*Integral_{x=0..infinity} x^5/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=6, p. 807. See also A337710 for the value of the integral.

zeta(6) = (4/465)*Integral_{x=0..infinity} x^5/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=6, p. 807. The value of the integral is (31/252)*Pi^6 = 118.2661309... . (End)

EXAMPLE

1.01734306198444913...

MAPLE

evalf(Pi^6/945) ;  # R. J. Mathar, Oct 16 2015

MATHEMATICA

RealDigits[Zeta[6], 10, 100][[1]] (* Vincenzo Librandi, Feb 15 2015 *)

PROG

(PARI) zeta(6) \\ Michel Marcus, Feb 15 2015

CROSSREFS

Cf. A013662, A013666, A013668, A013670, A337710.

Sequence in context: A066747 A240908 A117043 * A154173 A075697 A222231

Adjacent sequences:  A013661 A013662 A013663 * A013665 A013666 A013667

KEYWORD

nonn,cons

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 05:09 EDT 2021. Contains 345416 sequences. (Running on oeis4.)