login
A066747
Decimal expansion of the "binary" Copeland-Erdős constant 0.734121515408286120606...: concatenate primes in base two.
4
7, 3, 4, 1, 2, 1, 5, 1, 5, 4, 0, 8, 2, 8, 6, 1, 2, 0, 6, 0, 6, 2, 7, 8, 2, 8, 8, 4, 5, 7, 2, 3, 2, 1, 4, 9, 2, 2, 8, 5, 6, 5, 0, 4, 6, 6, 1, 1, 6, 1, 3, 9, 9, 1, 4, 0, 6, 6, 0, 3, 4, 1, 2, 5, 5, 5, 9, 5, 4, 0, 4, 5, 0, 4, 3, 7, 0, 0, 3, 1, 0, 8, 0, 6, 4, 3, 0, 6, 3, 4, 9, 2, 6, 9, 3, 2, 5, 6, 1, 6
OFFSET
0,1
COMMENTS
The "binary" Copeland-Erdős constant is obtained by concatenating the binary representations of the primes = 0.(10)(11)(101)(111)(1011)(1101)(10001)...
A theorem of Copeland & Erdős proves that this constant is 2-normal. - Charles R Greathouse IV, Feb 06 2015
LINKS
A. H. Copeland and P. Erdős, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.
MATHEMATICA
a = {}; Do[ a = Append[a, IntegerDigits[ Prime[n], 2]], {n, 1, 100}]; RealDigits[ N[ FromDigits[ {Flatten[a], 0}, 2], 100]]
PROG
(PARI) sum(n=1, 25, (p=prime(n))*.5^s+=logint(p, 2)+1, s=0)+printf("Accurate to %.0E", .5^s) \\ M. F. Hasler, Oct 25 2019
CROSSREFS
Cf. A066748 (continued fraction), A191232 (binary digits).
Cf. A033308 (base-10 Copeland-Erdős constant).
Sequence in context: A169813 A097517 A127559 * A240908 A117043 A013664
KEYWORD
nonn,cons,base
AUTHOR
Robert G. Wilson v, Jan 16 2002
STATUS
approved