OFFSET
0,1
COMMENTS
The "binary" Copeland-Erdős constant is obtained by concatenating the binary representations of the primes = 0.(10)(11)(101)(111)(1011)(1101)(10001)...
A theorem of Copeland & Erdős proves that this constant is 2-normal. - Charles R Greathouse IV, Feb 06 2015
LINKS
A. H. Copeland and P. Erdős, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.
MATHEMATICA
a = {}; Do[ a = Append[a, IntegerDigits[ Prime[n], 2]], {n, 1, 100}]; RealDigits[ N[ FromDigits[ {Flatten[a], 0}, 2], 100]]
PROG
(PARI) sum(n=1, 25, (p=prime(n))*.5^s+=logint(p, 2)+1, s=0)+printf("Accurate to %.0E", .5^s) \\ M. F. Hasler, Oct 25 2019
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Jan 16 2002
STATUS
approved