login
A191232
Concatenation of primes written in base 2 (A004676).
8
1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1
OFFSET
1
COMMENTS
Binary expansion of the "binary" Copeland-Erdős constant: concatenate primes in base two. - Daniel Forgues, Mar 25 2018
Could be read as a table whose rows are the binary digits of the n-th prime, A004676(n). - M. F. Hasler, Oct 25 2019
EXAMPLE
0.10111011111011110110001... ("binary" Copeland-Erdős constant).
The prime number 23 is 10111 in base 2, and 1, 0, 1, 1, 1 is in the sequence, a(29) through a(33). - Michael B. Porter, Apr 05 2018
MATHEMATICA
IntegerDigits[#, 2] & /@ Prime@ Range@ 19 // Flatten (* Michael De Vlieger, Apr 07 2018 *)
PROG
(PARI) concat(binary(vector(20, n, prime(n)))) \\ M. F. Hasler, Oct 08 2011
(Python)
from sympy import nextprime
from itertools import islice
def agen(p=2): # generator of terms
while True: yield from (int(b) for b in bin(p)[2:]); p = nextprime(p)
print(list(islice(agen(), 92))) # Michael S. Branicky, Jul 03 2022
CROSSREFS
Cf. A004676 (primes in binary), A066747 (decimal expansion of the constant), A033308 (Copeland-Erdős constant in base 10), A190480.
Sequence in context: A131379 A359819 A284677 * A267814 A267272 A181656
KEYWORD
nonn,base
AUTHOR
STATUS
approved