login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191232
Concatenation of primes written in base 2 (A004676).
8
1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1
OFFSET
1
COMMENTS
Binary expansion of the "binary" Copeland-Erdős constant: concatenate primes in base two. - Daniel Forgues, Mar 25 2018
Could be read as a table whose rows are the binary digits of the n-th prime, A004676(n). - M. F. Hasler, Oct 25 2019
EXAMPLE
0.10111011111011110110001... ("binary" Copeland-Erdős constant).
The prime number 23 is 10111 in base 2, and 1, 0, 1, 1, 1 is in the sequence, a(29) through a(33). - Michael B. Porter, Apr 05 2018
MATHEMATICA
IntegerDigits[#, 2] & /@ Prime@ Range@ 19 // Flatten (* Michael De Vlieger, Apr 07 2018 *)
PROG
(PARI) concat(binary(vector(20, n, prime(n)))) \\ M. F. Hasler, Oct 08 2011
(Python)
from sympy import nextprime
from itertools import islice
def agen(p=2): # generator of terms
while True: yield from (int(b) for b in bin(p)[2:]); p = nextprime(p)
print(list(islice(agen(), 92))) # Michael S. Branicky, Jul 03 2022
CROSSREFS
Cf. A004676 (primes in binary), A066747 (decimal expansion of the constant), A033308 (Copeland-Erdős constant in base 10), A190480.
Sequence in context: A131379 A359819 A284677 * A267814 A267272 A181656
KEYWORD
nonn,base
AUTHOR
STATUS
approved