login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359819
Dirichlet inverse of A359590.
2
1, 0, -1, -1, -1, 0, -1, -1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, 1, 1, 0, -1, 1, 1, 0, -1, 1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, 1, 1, -1, 0, -1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, -1, -1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, -1, 1, 1, 0, -1, -1, 1, 0, -1, -1, 1, 0, 1, 1, -1, 0, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
Multiplicative because A359590 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359590(n/d) * a(d).
Multiplicative with a(2) = 0, a(2^e) = -1 if e == 2 or 3 (mod 4) and 1 if e > 1 and e == 0 or 1 (mod 4), and for p > 2, a(p^e) = (-1)^e. - Amiram Eldar, Feb 09 2023
MATHEMATICA
f[p_, e_] := (-1)^e; f[2, e_] := If[e==1, 0, If[Mod[e, 4] > 1, -1, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)
CROSSREFS
Cf. A152822 (parity and the absolute values), A359590.
Sequence in context: A317198 A354993 A131379 * A284677 A191232 A267814
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jan 17 2023
STATUS
approved