Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #34 Jul 04 2022 01:36:34
%S 1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,1,1,1,
%T 1,1,0,1,1,1,1,1,1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,1,
%U 1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,1,1
%N Concatenation of primes written in base 2 (A004676).
%C Binary expansion of the "binary" Copeland-Erdős constant: concatenate primes in base two. - _Daniel Forgues_, Mar 25 2018
%C Could be read as a table whose rows are the binary digits of the n-th prime, A004676(n). - _M. F. Hasler_, Oct 25 2019
%e 0.10111011111011110110001... ("binary" Copeland-Erdős constant).
%e The prime number 23 is 10111 in base 2, and 1, 0, 1, 1, 1 is in the sequence, a(29) through a(33). - _Michael B. Porter_, Apr 05 2018
%t IntegerDigits[#, 2] & /@ Prime@ Range@ 19 // Flatten (* _Michael De Vlieger_, Apr 07 2018 *)
%o (PARI) concat(binary(vector(20,n,prime(n)))) \\ _M. F. Hasler_, Oct 08 2011
%o (Python)
%o from sympy import nextprime
%o from itertools import islice
%o def agen(p=2): # generator of terms
%o while True: yield from (int(b) for b in bin(p)[2:]); p = nextprime(p)
%o print(list(islice(agen(), 92))) # _Michael S. Branicky_, Jul 03 2022
%Y Cf. A004676 (primes in binary), A066747 (decimal expansion of the constant), A033308 (Copeland-Erdős constant in base 10), A190480.
%K nonn,base
%O 1
%A _Juri-Stepan Gerasimov_, May 27 2011