|
|
A033308
|
|
Decimal expansion of Copeland-Erdős constant: concatenate primes.
|
|
58
|
|
|
2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, 0, 3, 1, 0, 7, 1, 0, 9, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 3, 7, 1, 3, 9, 1, 4, 9, 1, 5, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 1, 7, 9, 1, 8, 1, 1, 9, 1, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The number .23571113171923.... was proved normal in base 10 by Copeland and Erdős but is not known to be normal in other bases. - Jeffrey Shallit, Mar 14 2008
Could be read (with indices 1, 2, ...) as irregular table whose n-th row lists the A097944(n) digits of the n-th prime A000040(n). - M. F. Hasler, Oct 25 2019
|
|
REFERENCES
|
G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..2000
A. H. Copeland and P. Erdős, Note on Normal Numbers, Bull. Amer. Math. Soc. 52, 857-860, 1946.
Mikołaj Morzy, Tomasz Kajdanowicz, Przemysław Kazienko, On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy, Complexity, Volume 2017 (2017), Article ID 3250301, p. 5.
Simon Plouffe, Copeland-Erdos constant, the primes concatenated
Simon Plouffe, Copeland-Erdos constant, the primes concatenated
Eric Weisstein's World of Mathematics, Copeland-Erdős Constant
|
|
FORMULA
|
Equals sum(n=1..inf, prime(n)*10^-A068670(n)). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006
Equals sum(i=1..inf, p_i * 10^-( sum(j=1..i, 1 + floor(log_10(p_j))) )) or sum(i=1..inf, p_i * 10^-( i + sum(j=1..i, floor(log_10(p_j))) )) or sum(i=1..inf, p_i * 10^-( sum(j=1..i, ceiling(log_10(1 + p_j))) )). - Daniel Forgues, Mar 26-28 2014
|
|
EXAMPLE
|
0.235711131719232931374143475359616771737983899710110310710911312...
|
|
MATHEMATICA
|
N[Sum[Prime[n]*10^-(n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}]), {n, 1, 40}], 100] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
N[Sum[Prime@n*10^-(n + Sum[Floor[Log[10, Prime@k]], {k, n}]), {n, 45}], 106] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
IntegerDigits //@ Prime@Range@45 // Flatten (* Robert G. Wilson v Oct 03 2006 *)
|
|
PROG
|
(PARI) default(realprecision, 2080); x=0.0; m=-1; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=x/10^m; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b033308.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
(PARI) concat( apply( {row(n)=digits(prime(n))}, [1..99] )) \\ Yields this sequence; row(n) then yields the digits of prime(n) = n-th row of the table, cf. comments. - M. F. Hasler, Oct 25 2019
(Haskell)
a033308 n = a033308_list !! (n-1)
a033308_list = concatMap (map (read . return) . show) a000040_list :: [Int]
-- Reinhard Zumkeller, Mar 03 2014
|
|
CROSSREFS
|
Cf. A030168 (continued fraction), A072754 (numerators of convergents), A072755 (denominators of convergents).
Cf. A000040 (primes), A097944 (row lengths if this is read as table), A228355 (digits of the primes listed in reversed order).
Cf. A033307 (Champernowne constant: analog for positive integers instead of primes), A007376 (digits of the integers, considered as infinite word or table), A066716 (decimals of the binary Champernowne constant).
Cf. A165450, A019518, A074721, A073034, A191232, A129808.
Cf. A066747 and A191232: binary Copeland-Erdős constant: decimals and binary digits.
See also A338072.
Sequence in context: A113493 A060420 A077648 * A134690 A295868 A228355
Adjacent sequences: A033305 A033306 A033307 * A033309 A033310 A033311
|
|
KEYWORD
|
nonn,cons,base
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|