login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068670
Number of digits in the concatenation of first n primes.
11
0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154
OFFSET
0,3
COMMENTS
Partial sums of A097944. - Lekraj Beedassy, Aug 26 2008
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000. (Initial 0 added by M. F. Hasler, Nov 02 2019.)
Eric Weisstein's World of Mathematics, Copeland-Erdos Constant
FORMULA
a(n) = Sum_{i=1..n} ceiling(log_10(1 + prime(i))). - Daniel Forgues, Apr 02 2014
EXAMPLE
a(5) is 6 because concatenating the first five primes gives 235711, which has six digits.
MATHEMATICA
Table[n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}], {n, 1, 90}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
Accumulate[IntegerLength[Prime[Range[70]]]] (* Harvey P. Dale, Jul 01 2012 *)
PROG
(Magma) a068670:=func< n | n + &+[ Floor(Log(10, NthPrime(k))): k in [1..n] ] >; [ a068670(n): n in [1..70] ];
(PARI) A68670=List(0); A068670(n)={for(N=#A68670, n, listput(A68670, A68670[N] + A097944(N))); A68670[n+1]} \\ M. F. Hasler, Oct 24 2019
(Python)
from sympy import sieve
from itertools import accumulate, chain
def f(_, n): return _ + len(str(n))
def agen(): yield from accumulate(chain((0, ), (p for p in sieve)), f)
print(list(islice(agen(), 62))) # Michael S. Branicky, Feb 03 2023
CROSSREFS
Cf. A019518, A097944 (number of decimal digits of the primes).
Cf. A033308 (decimal expansion of the Copeland-Erdos constant).
Sequence in context: A004271 A004278 A333183 * A371925 A084925 A045718
KEYWORD
nonn,base
AUTHOR
Eugene McDonnell (eemcd(AT)mac.com), Jan 18 2004
EXTENSIONS
Extended to a(0) = 0 by M. F. Hasler, Oct 24 2019
STATUS
approved