login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033305
Number of permutations (p1,...,pn) such that 1 <= |pk - k| <= 2 for all k.
8
1, 0, 1, 2, 4, 6, 13, 24, 45, 84, 160, 300, 565, 1064, 2005, 3774, 7108, 13386, 25209, 47472, 89401, 168360, 317056, 597080, 1124425, 2117520, 3987721, 7509690, 14142276, 26632782, 50154949, 94451976, 177872293
OFFSET
0,4
REFERENCES
Lehmer, D. H.; Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
R. P. Stanley, Enumerative Combinatorics I, p. 252, Example 4.7.16.
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
G.f.: (1-x)/((1+x)*(1 - 2*x + x^2 - 2*x^3 + x^4)).
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) - a(n-5).
a(n) = h(n) - h(n-1), n>0, h(n) = Sum_{k=1..n} (Sum_{r=0..k} (C(k,r)*Sum_{m=0..r}(C(r,m)*Sum_{j=0..m} C(m,j)*C(j,n-m-k-j-r)*(-1)^(n-m-k-j-r) ))). - Vladimir Kruchinin, Sep 10 2010
Limit_{n -> oo} a(n)/a(n-1) = (1 + sqrt(2) + sqrt(2*sqrt(2)-1)) /2 = 1.88320350591... for n>2. Limit_{n -> oo} a(n-1)/a(n) = (1 + sqrt(2) - sqrt(2*sqrt(2)-1)) /2 = 0.53101005645... for n>0. - Tim Monahan, Aug 09 2011
7*a(n) = 2*(-1)^n - 8*A112575(n) - 2*A112575(n-2) + 6*A112575(n-1) + 5*A112575(n+1). - R. J. Mathar, Sep 27 2013
Empirical: a(n) + a(n+1) = A183324(n). - R. J. Mathar, Sep 27 2013
MATHEMATICA
LinearRecurrence[{1, 1, 1, 1, -1}, {1, 0, 1, 2, 4}, 40] (* Harvey P. Dale, Aug 28 2012 *)
PROG
(Maxima) h(n) := sum(sum(binomial(k, r) *sum(binomial(r, m) *sum(binomial(m, j) *binomial(j, n-m-k-j-r) *(-1)^(n-m-k-j-r), j, 0, m), m, 0, r), r, 0, k), k, 1, n); a(n):=h(n)-h(n-1); /* Vladimir Kruchinin, Sep 10 2010 */
(Magma) I:=[1, 0, 1, 2, 4]; [n le 5 select I[n] else Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4) -Self(n-5): n in [1..41]]; // G. C. Greubel, Jan 14 2022
(SageMath) [( (1-x)/((1+x)*(1-2*x+x^2-2*x^3+x^4)) ).series(x, n+1).list()[n] for n in (0..40)] # G. C. Greubel, Jan 14 2022
CROSSREFS
Column k=2 of A259776.
Sequence in context: A109078 A291738 A321228 * A105543 A309352 A295618
KEYWORD
nonn,easy
EXTENSIONS
New description from Max Alekseyev, Jul 09 2006
STATUS
approved