|
|
A033303
|
|
Expansion of (1 + x)/(1 - 2*x - x^2 + x^3).
|
|
8
|
|
|
1, 3, 7, 16, 36, 81, 182, 409, 919, 2065, 4640, 10426, 23427, 52640, 118281, 265775, 597191, 1341876, 3015168, 6775021, 15223334, 34206521, 76861355, 172705897, 388066628, 871977798, 1959316327
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also the number of one-sided n-step prudent walks that avoid 3 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
Equivalently, number of ternary strings of length n with subwords (0,0) and (1,2) not allowed. - Olivier Gérard, Aug 28 2012
a(n) is the number of vertices of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. - Alejandro H. Morales, Oct 05 2022
|
|
REFERENCES
|
R. P. Stanley, Enumerative Combinatorics I, p. 244.
|
|
LINKS
|
|
|
FORMULA
|
a(0)=1, a(1)=h(n), and a(n) = h(n) + h(n-1) for n >= 2, where h(n) = Sum_{k=1..n} Sum_{j=0..k} binomial(k, j) * binomial(j, n-3*k+2*j) * 2^(3*k-n-j) * (-1)^(k-j). - Vladimir Kruchinin, Sep 09 2010
a(0)=1, a(1)=3, a(2)=7, a(n) = 2*a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 31 2013
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x)/(1 - 2*x - x^2 + x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 20 2012 *)
LinearRecurrence[{2, 1, -1}, {1, 3, 7}, 40] (* Harvey P. Dale, Oct 31 2013 *)
|
|
PROG
|
(Maxima) h(n):=sum(sum(binomial(k, j)*binomial(j, n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j), j, 0, k), k, 1, n); a(n):=if n=0 then 1 else if n=2 then h(n) else h(n)+h(n-1); /* Vladimir Kruchinin, Sep 09 2010 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|