login
A295868
Initial digit of the number of partitions of n.
0
1, 1, 2, 3, 5, 7, 1, 1, 2, 3, 4, 5, 7, 1, 1, 1, 2, 2, 3, 4, 6, 7, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1
OFFSET
0,3
LINKS
Theresa C. Anderson, Larry Rolen and Ruth Stoehr, Benford's Law for Coefficients of Modular Forms and Partition Functions, Proceedings of the American Mathematical Society, 139 (2011), pp. 1533-1541.
Wikipedia, Benford's law
FORMULA
a(n) = A000030(A000041(n)).
MATHEMATICA
(* The first one hundred terms of the sequence *)
Join[{1}, First[IntegerDigits[PartitionsP[#]]] & /@ Range[99]]
f[n_] := Block[{p = PartitionsP@ n}, Floor[p/10^Floor@ Log10@ p]]; Array[f, 105, 0] (* Robert G. Wilson v, Feb 18 2018 *)
PROG
(PARI) a(n) = digits(numbpart(n))[1]; \\ Michel Marcus, Feb 16 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
José Hernández, Feb 13 2018
STATUS
approved