OFFSET
0,1
COMMENTS
A theorem of Copeland & Erdős proves that this constant is 2-normal. - Charles R Greathouse IV, Feb 06 2015
This constant is transcendental. Note that this result is nontrivial: it is not a corollary of the result of Masaaki Amou saying that the base-b Champernowne constant has irrationality measure b, because the Thue-Siegel-Roth theorem only guarantees that a number with irrationality measure greater than 2 is transcendental. However, it is already stated in Masaaki Amou's paper that K. Mahler proved that the base-b Champernowne constant is transcendental for all b. - Jianing Song, Sep 27 2023
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..10000
Masaaki Amou, Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory, 37 (2) (1991), pp. 231-241.
A. H. Copeland and P. Erdős, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.
Eric E. Weisstein, Binary Champernowne Constant.
FORMULA
The "binary" Champernowne constant is the number whose base-2 expansion is the concatenation of the binary representations of the integers, 0.(1)(10)(11)(100)(101)(110)(111)(1000)..., cf. A030302.
EXAMPLE
0.8622401258680545715577902832493945785657647427682990945160712145573067405905...
MATHEMATICA
a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 100} ]; RealDigits[ N[ FromDigits[ {Flatten[a], 0}, 2], 100]]
First[RealDigits[ChampernowneNumber[2], 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
PROG
(PARI) my(s=0.); forstep(n=default(realprecision), 1, -1, s=(s+n)>>#binary(n)); s \\ Charles R Greathouse IV, Feb 06 2015, corrected by M. F. Hasler, Mar 22 2017
(PARI) s=0; sum(n=1, 31, n*.5^s+=logint(n, 2)+1) \\ Accurate to 0.5^s. The sum up to n=31 is enough for standard precision of 38 digits. - M. F. Hasler, Mar 22 2017
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Jan 14 2002
EXTENSIONS
Leading zero removed, offset adjusted, and keyword:cons added by R. J. Mathar, Mar 04 2010
Name edited by M. F. Hasler, Oct 26 2019
STATUS
approved